Estimation of non-isothermal growth of bacteria Aeromonas hydrophila from isothermal data
DOI:
https://doi.org/10.31416/rsdv.v3i2.169Keywords:
Predictive microbiology, Mathematical modeling, Non-isothermal modelAbstract
In recent years considerable effort has been invested in the development of mathematical models to explain the growth of microorganisms in food products. For these models may be applied in foods stored in real conditions is necessary to consider the effect of changes in variables such as temperature. The objective of this study was to evaluate the methodology proposed by Corradini and Peleg (2005) and Corradini et al. (2006) to obtain a nonisothermal model from isothermal growth data of the bacterium Aeromonas hydrophila, adjusted by Gompertz modified model. The isothermal growth data were obtained from the database ComBase Predictor and secondary models were obtained with the mathematical functions "Power" and "Power 1". The modified Gompertz model fits well to the data of isothermal growth of the bacterium Aeromonas and use of functions "Power" and "Power 1" in the secondary model adjustment showed good results. Was possible to predict the non-isothermal growth of Aeromonas hydrophila bacteria using the methodology proposed by Corradini and Peleg (2005) and Corradini et al. (2006).
References
Azevedo, V. M.; Morita, M.; Dropa, M.;
Cabianca, M. A. A.; Esteves, K. E. E.; Matté,
G. R. Matté, M. H. Ocorrência de Aeromonas
spp. e Vibrio cholerae em Pesque-Pagues da
Região Metropolitana de São Paulo. REVNET
DTA. Vol. 3, No. 4, Julho 2003.
Baranyi, J.; Roberts, T. A., Mathematics of
Predictive Food Microbiology. International
Journal of Food Microbiology, v. 26, p.199-
, 1995.
Bobelyn, E.; Hertog, L. A. T. M. M.; Nicolaï,
B. M. (2006) Applicability of an enzymatic
time temperature integrator as a quality
indicator for mushrooms in the
distributionchain. Postharvest Biology and
Technology 42, 104–114.
Buchanan, R. L. Predictive Microbiology.
Trends Food Science Technology, v.4, p.6-11,
Buchanan, R. L.; Whiting, R. C.; Damert, W.
C. When is simple good enough: A comparison
of the Gompertz, Baranyi, and three-phase
linear models for fitting bacterial growth
curves. Food Microbiology, v.14, p.313-326,
Cayré, M. E.; Vignolo, G.; Garro, O. Modeling
lactic acid bacteria growth in vacuum-packaged
cooked meat emulsion stored at three
temperatures. Food Microbiology, v. 20,
p.561-566, 2003.
Cayré, M. E.; Vignolo, G.; Garro, O. Effect of
storage temperature and gas permeability of packaging film on the growth of lactic acid
bacteria and Brochothrix thermosphacta in
cooked meat emulsions. Food Microbiology,
v. 22, p.505-512, 2005.
COMBASE Predictor – Base de dados de
microrganismos patogênicos. Disponível em:
<http://modelling.combase.cc/ComBase_Predic
tor.aspx> Acessado em 08/09/2011.
Corradini, M. G.; Amezquita, A.; Normand, M.
D.; Peleg, M. Modeling and predicting non-
isothermal microbial growth using general
purpose software. International Journal of
Food Microbiology, v.106, p. 223-228, 2006.
Corradini, M. G.; Peleg, M. Estimating non-
isothermal bacterial growth in foods from
isothermal experiments data. Journal of
Applied Microbiology, v. 99, p 187-200, 2005.
Fujikawa, H.; Kai. A.; Morozumi, S.; A new
logistic model for Escherichia coli growth at
constant and dynamic temperatures. Food
Microbiology, v.21, p.501-509, 2004.
Gaspovic, R.; Kreyenschmidt, J.; Bruckner, S.;
Popov, V.; Haque, N. Mathematical modelling
for predicting the growth of Pseudomonas spp.
in poultry under variable temperature
conditions. International Journal of Food
Microbiology 127 (2008) 290–297.
Gibson, A. M.; Bratchell, H.; Roberts, T. A.
(1987). The effect of sodium chloride and
temperature on rate and extent of growth of
Clostridium botulinum type A in pasteurized
pork slurry. Applied Bacteriology. 62, 479–
McMeekin, T. A.; Brown, J. ; Krist, K.; Miles,
D.; Neumeyer, K.; Nichols, D. S. ; Olley, J.;
Presser, K. ; Ratkowsky, T. D. A.; Ross, M. S.;
Soontranon, S. Quantitative Microbiology: A
Basis for Food Safety, Emerging Infectious
Diseases, v. 3, n° 4, 1997.
McMeekin, T. A.; Olley, M. B.; Ross, T.,
Ratkowsky, D. A., Predictive Microbiology:
theory and application. Researches Studies, p.
-86, 1993.
Nakashima, S. M. K.; André, D. S. ; Franco, B.
D. G. M. Revisão: Aspectos Básicos da
Microbiologia Preditiva. Brazilian Journal of
Food Technology, v. 3, p.41-51, 2000.
Ratkowsky, D. A.; Lowry, R. K.; Mcmeekin, T.
A.; Stokes, A. N.; Chandler, R. E. (1983)
Model for bacterial culture growth rate through
the entire biokinetic temperature range.
Journal of Bacteriology 154, 1222–1226.
Ross, T.; McMeekin, T. A. Predictive
Microbiology. International Journal of Food
Microbiology, v.23, p.41-264, 1994.
Sarmento, C. M. P. Modelagem do
crescimento microbiano e avaliação
sensorial no estudo da vida de prateleira da
mortadela e da lingüiça defumada em
armazenamento isotérmico e não isotérmico.
(Tese de Doutorado), Programa de pós-
graduação em Engenharia Química. UFSC,
Florianópolis, setembro de 2006.
Slongo, A. P.; Rosenthal, A.; Camargo, L. M.
Q.; Deliza, R.; Mathias, S. P.; Aragão, G. M. F.
Modeling the growth of lactic acid bacteria in
sliced ham processed by high hydrostatic
pressure. Food Science and Technology, 42
(2009) 303–306.
Van Impe, J. F.; Bart, M. N.; Schellekens, M.;
Martens, T.; Baerdemaeker, J. A. Predictive
microbiology in a dynamic environment: a
system theory approach. International
Journal of Food Microbiology, v. 25, p.227-
, 1995.